
By Ian Gardner, founder, EVAI
July 2, 2025
The landscape for vehicle fleet companies in 2025 is marked by a maelstrom of escalating costs, forcing fleet managers to confront unprecedented challenges in maintaining profitability and operational efficiency. Acquisition and leasing costs are projected to soar by 10-15%, mirroring a similar jump of 12-15% in insurance premiums. The price of spare parts is experiencing multiple hikes, with an average increase of 8%, and the complexities of international trade, particularly with China, are further inflating expenses due to volatile exchange rates and tariffs.
This perfect storm of rising expenditures underscores an undeniable truth: accurate Total Cost of Ownership (TCO) calculation is no longer merely a best practice but a critical imperative for survival and strategic growth. In this volatile environment, the conventional approaches to TCO are proving woefully inadequate, leaving many fleets vulnerable to significant financial pitfalls. The future, and indeed the present, demands a true shift toward advanced AI-powered TCO technology platforms that leverage predictive modelling.
This is especially true for those possessing the crucial capability of being OEM data agnostic and incorporating cost and performance data of ancillary on-vehicle systems like refrigeration, pony motors and other aftermarket technologies that have their own TCO, use, maintenance, and repair profiles.
The Frustrations of Traditional TCO: A Recipe for Costly Inaccuracies
Traditional small fleet TCO methods, reliant on spreadsheets and manual calculations, are inefficient and riddled with costly inaccuracies. Without advanced AI and predictive modeling, fleet managers remain reactive, making decisions on historical data that can’t keep pace with dynamic market changes. This leads to underestimated expenses, budget overruns, suboptimal vehicle choices, and missed savings.
The sheer volume of vehicle data becomes a burden, causing data stagnation and blind spots. This problem is particularly acute for Electric Vehicles (EVs). Traditional TCO models, designed for ICE vehicles, fail to accurately factor in EV-specific costs like charging infrastructure, accurate usage-based battery degradation, and evolving maintenance.
Additionally, EV fleets face unique challenges such as the impact of fluctuating energy prices, the need for specialized technician training, and the unpredictability of battery life cycles—all of which can dramatically affect long-term costs if not properly modeled. Fleets adopting EVs without AI-driven TCO risk miscalculating true costs and undermining sustainability goals, as legacy systems can’t handle the real-time forecasting needed for dynamic energy pricing and battery tech.
The Peril of OEM-Specific Data: Impact on Acquisition and Insurance
The lack of OEM data agnosticism in many existing TCO platforms presents an even more nuanced problem, particularly concerning vehicle acquisition and insurance costs. When a TCO platform is tied to specific OEM data, fleet managers are presented with a limited and potentially biased view of vehicle performance and cost-effectiveness, which can be slanted to provide a particular point of view. OEMs, naturally, have a vested interest in promoting their own products. And their provided data, while valuable, may not always offer the complete, unbiased picture required for truly objective decision-making.
This can lead to a reliance on information that, while technically accurate, might omit crucial comparative data points from other manufacturers, hindering a fleet’s ability to truly optimize its procurement strategies across brands and platforms. Without the ability to ingest and analyze data from all vehicle manufacturers – a capability inherent in OEM-agnostic platforms – fleet managers cannot conduct truly apples-to-apples comparisons across diverse vehicle types and brands.
This limitation means they might inadvertently acquire vehicles that, while seemingly cost-effective upfront, prove more expensive over their lifecycle due to higher maintenance needs, lower fuel efficiency, or poorer resale value compared to alternative OEM offerings that were not properly evaluated.
The ramifications extend directly to insurance premiums. Insurance providers rely heavily on comprehensive, accurate data to assess risk and determine coverage costs. When a fleet’s TCO calculations are opaque or incomplete due to a lack of OEM-agnostic data, it becomes challenging to present a compelling, data-backed case for favorable insurance rates.
Insurers may perceive higher risk if they cannot fully understand the granular details of vehicle performance, maintenance history, and operational efficiency across a mixed fleet. A system that can seamlessly integrate data from various OEMs provides a holistic view of the fleet’s health and operational patterns, enabling fleet managers to demonstrate a proactive, data-driven approach to risk management.
This transparency, facilitated by OEM-agnostic AI, can be a powerful lever in negotiating lower premiums and securing more tailored insurance policies, directly impacting the bottom line. Conversely, a fragmented data landscape, often a byproduct of non-agnostic platforms, can lead to higher insurance costs as providers err on the side of caution when faced with incomplete information.
The Power of AI-Powered, OEM-Agnostic TCO Platforms
Advanced AI-powered TCO tech platforms are a game-changer for fleet management. Leveraging machine learning, they process vast data—telematics, maintenance, fuel, driver behavior, external markets—for unprecedented predictive accuracy. Imagine AI forecasting component failures, enabling proactive repairs and drastically reducing downtime and costs.
These platforms also optimize routes in real-time, cutting fuel consumption significantly. Crucially, their OEM data agnostic nature means they analyze data from any vehicle manufacturer. This neutrality is vital for diverse fleets, allowing objective comparisons of lifecycle costs across ICE and EV models. Such unbiased insights empower strategic procurement, ensuring optimal vehicle choices for acquisition, efficiency, and resale, ultimately securing better insurance rates, and optimizing your fleet’s financial health.
Early adopters of these platforms have reported significant reductions in both maintenance and insurance costs—in some cases, achieving double-digit percentage savings within the first year—while also improving vehicle uptime and operational transparency. This tangible ROI demonstrates the value of a data-driven, predictive approach for fleets of all sizes.
The transition to a data-driven, predictive, and OEM-agnostic approach represents a fundamental shift that empowers fleet managers to navigate the complexities of the modern automotive landscape, optimize every facet of their operations, and secure a competitive edge in an increasingly challenging economic environment. The future of fleet profitability hinges on embracing the transformative power of AI to unlock true Total Cost of Ownership intelligence.
Ian Gardner is the founder of EVAI, a cloud-based, AI enabled platform for fleet electrification and management. Utilizing specialized fleet and EV focused AI tools combined with deep operational experience in the commercial EV and fleet spaces, EVAI delivers TCO and uptime to fleet managers, enabling them to realize a positive ROI on their alternative fuel vehicle and infrastructure investments. Visit www.goev.ai.